It is currently Wed Oct 17, 2018 4:46 am

 All times are UTC - 5 hours [ DST ]

 Page 1 of 1 [ 2 posts ]
 Print view Previous topic | Next topic
Author Message
 Post subject: GMAT Number Theory (Data Sufficiency)Posted: Fri Feb 24, 2012 7:43 pm

Joined: Sun May 30, 2010 3:15 am
Posts: 424
If m and n are different positive integers, then how many prime numbers are in set {m, n, m + n}?
(1) mn is prime.
(2) m + n is even.

A. Statement (1) BY ITSELF is sufficient to answer the question, but statement (2) by itself is not.
B. Statement (2) BY ITSELF is sufficient to answer the question, but statement (1) by itself is not.
C. Statements (1) and (2) TAKEN TOGETHER are sufficient to answer the question, even though NEITHER statement BY ITSELF is sufficient.
D. Either statement BY ITSELF is sufficient to answer the question.
E. Statements (1) and (2) TAKEN TOGETHER are NOT sufficient to answer the question, meaning that further information would be needed to answer the question.

(C) Statement (1) tells us that mn is prime. The product of two integers can be prime only if one integer is 1 and the other one is prime. Otherwise the product would be divisible by more factors than just itself and 1. We can plug in some small prime numbers to see that statement (1) by itself is NOT sufficient. The set can be {1, 2, 3} – 2 prime numbers, or it can be {1, 3, 4} – 1 prime number.

Statement (2) tells us that m + n is even. Therefore the integers are both odd or both even. Clearly, there are many options possible: {2, 4, 6} – 1 prime number, {4, 6, 8} – no prime numbers, {3, 5, 8} – 2 prime numbers. Therefore statement (2) by itself is NOT sufficient.

If we use the both statements together, the set is {1, n, n + 1}, where n is prime and odd. If n is odd, then n + 1 is even. So n + 1 is NOT prime. Therefore the set contains exactly one prime number. Statements (1) and (2) taken together are sufficient to answer the question, even though neither statement by itself is sufficient. The correct answer is C.
----------
In case of {1, n, n + 1}, what if n = 2, then n + 1 = 3. This makes the set as {1, 2, 3}. Thus 2 prime numbers. Hence this too is insufficient. Hence, the answer should be E.

Top

 Post subject: Re: GMAT Number Theory (Data Sufficiency)Posted: Fri Feb 24, 2012 7:45 pm

Joined: Sun May 30, 2010 2:23 am
Posts: 498
Quote:
In case of {1, n, n + 1}, what if n = 2, then n + 1 = 3. this makes the set as {1, 2, 3}. Thus 2 prime numbers. Hence this too is insufficient. Hence, the answer should be E.
Statement (2) implies, that n + 1 must be even. So the proposed example is NOT possible.

Top

 Display posts from previous: All posts1 day7 days2 weeks1 month3 months6 months1 year Sort by AuthorPost timeSubject AscendingDescending
 Page 1 of 1 [ 2 posts ]

 All times are UTC - 5 hours [ DST ]

#### Who is online

Users browsing this forum: No registered users and 5 guests

 You cannot post new topics in this forumYou cannot reply to topics in this forumYou cannot edit your posts in this forumYou cannot delete your posts in this forumYou cannot post attachments in this forum

Search for:
 Jump to:  Select a forum ------------------ GMAT    GMAT: Quantitative Section (Math)    GMAT: Verbal Section    GMAT: Integrated Reasoning    GMAT: General Questions GRE    GRE: Quantitative Reasoning (Math)    GRE: Verbal Reasoning    GRE: General Questions General questions    Other questions